
Experiments on ROP Attack with
Various Instruction Set Architectures

Yuuma Taki
GMO CyberSecurity by Ierae, Inc.

Tokyo, Japan
turkey0727@outlook.jp

Masayuki Fukumitsu
Faculty of Information System

Department of Information Security
University of Nagasaki

Nagayo, Japan
fukumitsu@sun.ac.jp

Tsubasa Yumura
Faculty of Information Media

Hokkaido Information University
Ebetsu, Japan

yumu@yumulab.org

Abstract—The return-oriented programming (ROP) attack
attempts to execute malicious code by collecting code snippets,
and several ROP variants have been proposed. Although there
are security mechanisms against ROP attacks, these require high-
spec architectures with respect to memories and CPUs. Recently,
Cloosters et al. analyzed the features of various CPUs including
the ARM 32, the ARM64 and the RISC-V, and they developed a
method to search ROP gadgets automatically and then construct
an ROP chain. In this paper, we reconsider the possibility of
ROP attacks against the x86, ARM32, and ARM64 architectures
to investigate their differences. In an experiment, these processors
were emulated using the QEMU emulator, and we demonstrate
that our method allows us to construct the target environments
easily even for multiple processors.

Index Terms—Return-oriented Programming, Security, CPU
Architectures

I. INTRODUCTION

Attackers attempt to execute malicious code by exploiting
vulnerabilities in computers, e.g., servers and IoT devices. A
representative method is the buffer overflow (BOF) attack,
which exploits a vulnerability by overflowing the buffer and
then rewriting a segment for a return address of a running
function.

Fig. 1. Shellcode injection by buffer overflow

A countermeasure against BOF attacks is non-executable
data memory [1], which prohibits executing code out of the
designated memory space. However, Return-oriented program-
ming (ROP) [2] enables BOF attack by constructing an ROP
chain, which is a collection of code snippets from a code seg-
ment. Here, the executing codes are collected from the allowed
space; thus, ROP can bypass conventional countermeasures.

The possibility of ROPs has been reported previously for the
x86 and ARM32 architectures [3]–[7].

Fig. 2. ROP Attack

There are several mechanisms to protect against ROP at-
tacks, e.g., the stack smashing protector (SSP) [8], address
space layout randomization (ASLR) [9], and control-flow
integrity (CFI) [10]. The SSP inserts a random value (called
a canary) just before the return address. Then, ROP attacks
can be prevented by executing a canary check during the
function prologue. However, a method is available to identify
the canary and circumvent this protection using improper
null termination, which is a bug related to null characters.
ASLR randomizes the placement of code and the data areas
of a program during program relocation. However, just-in-time
ROP (JIT-ROP) [11], which is a variant of the ROP attack,
can leak addresses. In environments where the address width
is less than 32 bits, address leakage by a brute force attack is
also possible due to the lack of entropy. In this sense, ASLR
is ineffective for devices with small address spaces, including
embedded devices. CFI can detect illegal control flows, e.g.,
unlawful jumping instructions, by monitoring control flows
during the execution of programs. Although CFI has been
implemented on the ARMv8-M architecture [12], which is
a processor for embedded devices, it generally requires high
CPU performance. Eventually, these protection mechanisms
require significant hardware resources in terms of both mem-
ory and CPU.

Tools to search ROP gadgets, which are sets of short
code snippets, and ROP chains for the ARM64 and RISC-



TABLE I
COMPARING FEATURES AMONG DIFFERENT PROCESSORS (SOURCE:

TABLE 1 IN [16])

x86 x86 64 ARM32 RISC-V ARM64
Writable program counter ◦ ◦ • ◦ ◦
Stack-return instruction • • • ◦ ◦
Max. arguments in registers 0 4–6 4 8 8
Instruction alignment 1 1 4/2 4/2 4
Short function epilogue • • • ◦ ◦

TABLE II
EXPERIMENTAL ENVIRONMENTS

Processor Architecture OS Execution State
x86 i686 x86 CentOS 6

ARM32 Arm Cortex-A53 Armv8-A RaspiOS AArch32
ARM64 Arm Cortex-A53 Armv8-A Nuttx AArch64

V architectures have also been proposed [13]–[15]. Recently,
the RiscyROP tool was proposed to generate ROP chains
automatically [16]. To realize this attack on ARM-64 and
RISC-V processors, they analyzed the features of processors
(Table I), and they developed a method to search ROP gadgets
automatically and then construct an ROP chain. This method
nearly resolves the problems of another ROP variant called
angrop [13], which involves overlooking some ROP gadgets
during symbolic executions. Nevertheless, it is possible that
some security mechanisms, including CFI, can protect even
a forceful variant of ROP. In this paper, we reconsider the
possibility of ROP attacks on the x86, ARM32, and ARM64
architectures. Here, we focus on the features of the processors
[16] shown in Table I, and then we discuss whether such differ-
ences among processors are inherently effective for the attack.
To investigate the processor features listed in Table I, we
demonstrate the ROP attack on the x86, ARM32, and ARM64
architectures. The environments considered in this study are
listed in Table II. For our experiments, we constructed the
environments for the attack on these three processors using
the QEMU emulator [17] to reduce costs. We also demonstrate
that our method allows us to construct the target environments
easily (even for multiple processors).

II. COMPONENTS AND SETTINGS OF DEMONSTRATIONS

A. QEMU

In this study, the QEMU emulator [17] was used to build
the target environments as guest environments. QEMU is a
processor emulator that can emulate both CPU and memory
devices. QEMU enables us to check the values stored in
the registers and memory of the guest environments at any
time. The configuration of our experiment is shown in Figure
3. Due to ethical considerations, the guest environments for
the ROP attack were isolated from other environments such
that they could not communicate with outsiders, and target
environments ware built by ourselves.

B. Target Environments

As shown in Table II, the target environments included the
following.

Fig. 3. Experimental configuration

Fig. 4. Result of regular execution of the test program

• CentOS6 on i686 (the x86 environment)
• Raspberry Pi OS on Arm Cortex-A53 AArch32 (the

ARM32 environment)
• NuttxOS on Arm Cortex-A53 AArch64 (the ARM64

environment)
We investigated the differences among the environments by
analyzing the stored values remaining in each environment.

C. Test Program for ROP Attack Verification

In this study, the test program, which has a vulnerability to
the ROP attack, on the x86 and ARM32 environments was
referenced from the literature [18]. This program regularly
checks whether the input string is the valid name designated
in the program. The result of the regular execution of the
test program on the ARM32 environment is shown in Figure
4. Note that this program has a BOF vulnerability because
it utilizes the gets() function, which does not check the
buffer bounds (Figure 5). In addition, we created an original
test program on the ARM64 environment that also has a
BOF vulnerability realized using the read() function. In this
experiment, various security mechanisms, e.g., ASLR and SSP,
were disabled to verify the possibility of the ROP attack due
to architectural differences.

D. Exploit Code

There are various derivatives of the ROP attack; however, in
this study, we focused on the original ROP attack because our
goal was to investigate vulnerable embedded devices. Here, an
exploit code executed on the host OS was written in Python
3.9.13, and the ROP chain was constructed using the exploit
development library Pwntools [19]. In addition, rp++ [20] and
Ropper [21] were used to search for the code snippets required
to construct an ROP chain.



Fig. 5. Vulnerable input functions used in test programs

Fig. 6. Stack behavior during function calls

III. ROP ATTACK ON X86 ENVIRONMENT

A. Function Calls in x86 Architecture

Function calls in the x86 architecture proceed as follows
using the call instruction.

1) Push the address of the next instruction as the return
address into the stack using the push instruction.

2) Jump to the address of the designated function.
3) Push the EBP, i.e., the base address of the stack frame,

into the stack by the callee, i.e., the called function.
4) Allocate a buffer to be handled by the callee by subtract-

ing the ESP. Figure 6 shows the content of the stack after
the instructions.

5) Pop the EBP in the function epilogue.
6) Jump to the return address pushed in Step 1) using the

ret instruction.

B. Return Address Overwrite on x86 Architecture

The offset from the BOF target buffer to the return address
can be calculated as follows.

EBP− (address of the buffer)
+ (the size of the stack base pointer).

Fig. 7. Part of the exploit code that builds the ROP chain(x86 environment)

Here, if the callee does not execute the EBP-based address
conversion, the EBP is not pushed during the function pro-
logue. In this case, the offset from the BOF target buffer to
the return address is calculated as follows.

EBP – (address of the buffer).

C. Code Snippet for ROP Attack

We utilized the following three instructions in the experi-
ment on the x86 environment.

• mov: To store the string /bin/sh in an area in the BSS
section.

• pop: To store value 11 in the EAX register and the address
of the string /bin/sh in the EBX register.

• int 0x80: To execute execve(/bin/sh).
Note that we can take control of a computer using
execve(/bin/sh).

D. Building and Sending ROP Chains

Figure 7 shows the part of the exploit code that builds
the ROP chain. In this experiment, we found that the at-
tack was successful, and control of the computer was taken.
By executing cat /etc/redhat-release from the host
environment and displaying the OS version of the guest
environment, we obtained the result shown in Figure 8.

IV. ROP ATTACK ON ARM32 ENVIRONMENT

A. Function Calls in ARM32 Architecture

Function calls in the ARM32 architecture are executed using
the bl instruction. the bl instruction does not necessarily
push the return address. Here, if a callee is a function that
does not call other functions (e.g., the leaf function), the
return address is stored in the link register (LR), and the push
of the return address is not executed. In contrast, the push of
the return address is executed in the same manner as the x86
architecture if, for example, the callee is a non-leaf function.
In this case, push {fp, lr} is essentially executed at the
function prologue of the callee, and then the LR and FP (i.e.,
the frame pointer register) are pushed into the stack in that



Fig. 8. ROP attack in x86 environment and the result of the OS version check
command cat /etc/redhat-release

Fig. 9. Part of the exploit code that builds the ROP chain (ARM32
environment)

order by the push instruction. Then, the buffer used by the
callee is prepared. In the function epilogue, pop {fp, lr}
is used to pop the FP and LR from the stack in that order,
and then the ret instruction is executed to jump to the return
address.

B. Return Address Overwrite on ARM32 Architecture

Note that the return address can be overwritten if the callee
is a non-leaf function. Similar to the x86 architecture, here,
the offset to the return address is calculated as follows.

FP− (address of the buffer) + (frame pointer size).

C. Code Snippet for ROP Attack

In the experiment on the ARM32 environment, We only
used the pop instruction to store the string "/bin/sh" in
the R0 register. This instruction is executed to take control of
the computer by storing the address of the system function
into the PC register and then executing system(/bin/sh).

D. Building and Sending ROP Chains

Figure 9 shows the part of the exploit code used to construct
the ROP chain. As a result of the verification, the attack was
successful, and control of the computer was taken. In fact, by
executing lsb_release -a from the host environment, we
confirmed the OS version of the guest environment, as shown
in 10.

Fig. 10. ROP attack in ARM32 environment and the result of the OS version
check command lsb_release -a

Fig. 11. Stack area during BOF attack on buffer1 in ARM64 environment

V. ROP ATTACK ON ARM64 ENVIRONMENT

We also conducted an experiment on the ARM64 environ-
ment. In contrast to the x86 and ARM32 experiments, the
attack failed in the ARM64 environment because the return
address could not be overwritten by the BOF attack. In the
following, we summarize the calling convention in the ARM64
architecture, and we report the results of a corresponding
debugger investigation.

A. Function Calls in ARM64 Architecture

Similar to the ARM32 environment, in the ARM64 envi-
ronment, the return address is pushed into the stack by the
callee. However, a buffer can be prepared before the push
instruction, and then the return address can be placed at a
lower address than the buffer. As shown in Figure 11, the test
program could not overwrite the return address, although the
callee ’s buffer was overwritten successfully.



Fig. 12. Stack area of ARM64 environment after executing the exploit code
(the area in the orange frame is the buffer, and the area in the blue frame is
the return address)

B. Debugging Investigation

Using the Project GNU debugger, we investigated the stack
area of the test program when the attack code was sent. Figure
12 shows that the return address was placed at a lower address
than the buffer, which implies that the return address was not
overwritten.

VI. DISCUSSION

A. ROP Prevention for x86 and ARM32 Environment

As demonstrated by previous studies [3]–[7], ROP attacks
are successful in the x86 and ARM32 environments. For this
situation, the security mechanisms implemented in OSs and
compilers enable mitigation of the ROP attacks. However, as
discussed in Section I, ASLR and SSP can be bypassed in
some environments [22]. CFI is a representative countermea-
sure against the ROP attacks. As mentioned in the literature
[16], it is generally known that bypassing properly imple-
mented CFI is difficult. Thus, we suggest that implementing
CFI is important to realize sufficient protection against ROP
attacks.

B. Challenges of ROP Attacks in ARM64 Environment

As mentioned previously, the ROP attack failed in the
ARM64 environment because the return address could not
be overwritten. However, even if the return address could
be overwritten successfully, the ROP attack would still be
difficult. In fact, the PC register cannot be overwritten except
the designate instructions such as ret and jmp as shown in
Table I [16]. Here, we discuss the architectural designs and
security mechanisms that make the ROP attack difficult.

1) Fixed Instruction Size: Unlike x86, the instruction length
of the Arm architecture is fixed. This factors imply that
collecting code snippets from unintended instructions cannot
be applied to the ARM architecture. Thus, the number of code
snippets available to the ROP chain is reduced significantly.

2) PC Register Rewrite Prohibition: In AArch32, it is
possible to write to any value in the PC register using
pop pc. However, in AArch64, writing to the PC register
using instructions other than jmp and ret is prohibited. This
restricts the termination of code snippets to either jmp or ret;
thus, the number of code snippets available for the ROP chain
is reduced.

TABLE III
ROP ATTACK VERIFICATION RESULTS(LR INDICATES LINK REGISTER; PC

INDICATES PROGRAM COUNTER REGISTER)

Target OS LR PC Success
x86 CentOS - Unrewritable 〇

ARM32 RaspiOS 〇 Rewritable 〇
ARM64 Nuttx 〇 Unrewritable ×

3) PAC: PAC (Pointer Authentication Code) [23] is a
representative security mechanism for ROP detection in
the ARM64. This mechanism has been implemented as of
ARMv8.3. PAC is realized using an authentication code em-
bedded in the function pointer. Here, by verifying the code
of the target pointer just before executing a jmp instruction,
an illegal jmp can be detected; thus, the program can be
protected.

4) Implementation in Other Architectures: As in our ex-
periments, BOF attacks can be mitigated by function calling
method that allows caller to temporarily store the return
address in LR, and callee to push the return address at
any timing. Compared to conventional security mechanism
implementations, e.g., ASLR and SSP, this countermeasure can
be implemented by simply devising a function call method.
Thus, we suggest that this method can be implemented easily
on low-resource architectures, e.g., embedded devices.

VII. CONCLUSION

In this paper, we verified ROP attacks on the x86, ARM32,
and ARM64 architectures to investigate the relevant proces-
sor features. We investigated the possibility of ROP attacks
depending on the CPU architecture by disabling security
mechanisms, e.g., ASLR and SSP, in our experiments. As
summarized in Table III , the experimental results demonstrate
that the ROP attack was successful for the x86 and ARM32
environments and unsuccessful for the ARM64 environment.
We also discussed the possibility of mitigating the rewriting
return address due to the BOF attacks by devising function
calls. In the future, we plan to conduct additional experiments
on different CPU architectures, particularly those used in
embedded devices with limited hardware resources.

REFERENCES

[1] P. Team, “Non-executable pages design & implementation,” https://pax.
grsecurity.net/docs/noexec.txt, (Accessed on August 1, 2023).

[2] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
programming: Systems, languages, and applications,” ACM Trans.
Inf. Syst. Secur., vol. 15, no. 1, mar 2012. [Online]. Available:
https://doi.org/10.1145/2133375.2133377

[3] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit
hardening made easy,” in 20th USENIX Security Symposium
(USENIX Security 11). San Francisco, CA: USENIX Association,
Aug. 2011. [Online]. Available: https://www.usenix.org/conference/
usenix-security-11/q-exploit-hardening-made-easy

[4] R. Hund, T. Holz, and F. C. Freiling, “Return-Oriented
rootkits: Bypassing kernel code integrity protection mechanisms,”
in 18th USENIX Security Symposium (USENIX Security 09).
Montreal, Quebec: USENIX Association, Aug. 2009. [On-
line]. Available: https://www.usenix.org/conference/usenixsecurity09/
technical-sessions/presentation/return-oriented-rootkits-bypassing



[5] T. Kornau, “Return oriented programming for the arm architecture,”
Master’s thesis, Ruhr-University Bochum, 2009.

[6] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy, “Return-oriented programming without returns,”
in Proceedings of the 17th ACM Conference on Computer and
Communications Security, ser. CCS ’10. New York, NY, USA:
Association for Computing Machinery, 2010, p. 559–572. [Online].
Available: https://doi.org/10.1145/1866307.1866370

[7] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, “Return-
oriented programming without returns on arm,” Ruhr-University
Bochum, System Security Lab, Tech. Rep. HGI-TR-2010-002, April
2010.

[8] A. One, “Smashing the stack for fun and profit,” Phrack, vol. 49, no. 14,
1996.

[9] P. Team, “Address space layout randomization (aslr),” https://pax.
grsecurity.net/docs/aslr.txt, (Accessed on August 1, 2023).

[10] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity principles, implementations, and applications,” ACM Trans.
Inf. Syst. Secur., vol. 13, no. 1, nov 2009. [Online]. Available:
https://doi.org/10.1145/1609956.1609960

[11] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization,” in 2013 IEEE Symposium
on Security and Privacy, 2013, pp. 574–588.

[12] T. Kawada, S. Honda, Y. Matsubara, and H. Takada, “Study on
multitasking-aware control-flow integrity based on trustzone for armv8-
m,” in Embedded System Symposium, vol. 2018, aug 2018, pp. 71–74,
(in Japanese).

[13] angr, “angrop,” https://github.com/angr/angrop/, (Accessed on August 1,
2023).

[14] radareorg, “Radare2: Libre reversing framework for unix geeks,” https:
//github.com/radareorg/radare2, (Accessed on August 1, 2023).

[15] J. Salwan, “Ropgadget tool,” https://github.com/JonathanSalwan/
ROPgadget, (Accessed on August 1, 2023).

[16] T. Cloosters, D. Paaßen, J. Wang, O. Draissi, P. Jauernig, E. Stapf,
L. Davi, and A.-R. Sadeghi, “Riscyrop: Automated return-oriented
programming attacks on risc-v and arm64,” in Proceedings of the
25th International Symposium on Research in Attacks, Intrusions
and Defenses, ser. RAID ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 30–42. [Online]. Available:
https://doi.org/10.1145/3545948.3545997

[17] T. Q. P. Developers, “Qemu,” https://www.qemu.org/, (Accessed on
August 1, 2023).

[18] kozos.jp, “Sample of rop experiment,” https://kozos.jp/samples/
rop-sample.html, (in Japanease, Accessed on August 1, 2023).

[19] Gallopsled, “pwntools - ctf toolkit,” https://github.com/Gallopsled/
pwntools, (Accessed on August 1, 2023).

[20] A. Souchet, “rp++: a fast rop gadget finder for pe/elf/mach-o
x86/x64/arm/arm64 binaries,” https://github.com/0vercl0k/rp, (Accessed
on August 1, 2023).

[21] S. Schirra, “Ropper,” https://github.com/sashs/Ropper, (Accessed on
August 1, 2023).

[22] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund,
and T. Walter, “Breaking the memory secrecy assumption,” in
Proceedings of the Second European Workshop on System Security,
ser. EUROSEC ’09. New York, NY, USA: Association for
Computing Machinery, 2009, pp. 1–8. [Online]. Available: https:
//dl.acm.org/doi/abs/10.1145/1519144.1519145

[23] J. Corbet, “Arm pointer authentication,” https://lwn.net/Articles/718888/,
(Accessed on August 1, 2023).


