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 In software system testing using Bluetooth Low Energy (BLE), it is necessary to evaluate 
the system, including the wireless communication. However, it is difficult to build a test 
environment for testing with physical machines because of installation costs. This problem 
can be solved by emulation to reproduce BLE communication on computers; however, a BLE 
emulator is required. In this paper, we propose a BLE emulator called BluMoon for testing 
software systems using BLE. We impose the following requirements on the BLE emulator: 
(1) calculating the received signal strength for each frame and (2) imitating radio interference. 
To satisfy these requirements, we devised a software-implemented BLE controller with a host 
controller interface as a boundary and devised a data format called the BluMoon frame for 
sending and receiving data frame by frame. We designed and implemented BluMoon, and 
performed functional and performance evaluation as well as a comparative experiment with a 
physical environment. The results revealed that it is possible to implement a BLE emulator that 
meets the aforementioned requirements.

1. Introduction

 Devices connected to a network are not limited to personal computers (PCs) and mobile 
phones; home appliances, wearable devices, and various other devices also communicate with 
peripherals and servers. Bluetooth Low Energy (BLE)(1) is one of the most commonly used 
wireless communication protocols for the connection of devices. This protocol is a short-range 
wireless communication standard that is suitable for installation in embedded devices owing to 
its low power consumption. It is also used as a beacon for positioning indoors when the Global 
Positioning System (GPS) cannot be used. 
 The development of a system using BLE involves the challenge of handling wireless 
communication. Because BLE involves wireless communication using radio waves, its behavior 
changes depending on the position of the transceiver and surrounding environment. For 
example, the received signal strength (RSS) used for proximity detection changes depending on 
the distance between the transmitter and the receiver. The RSS is also affected by reflection, 
shielding, and diffraction by surrounding objects, walls, and the ground. The RSS thus 
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fluctuates owing to subtle changes in the environment. Therefore, when using the RSS for an 
application, it is necessary to consider this fluctuation. In addition, BLE transmitters other than 
the target device may cause radio wave interference, resulting in loss of communication. 
 Typical software development is performed by confirming that the software behaves as 
expected and by correcting defects. However, it is difficult to verify the behavior of systems 
using BLE, as this requires physical devices to send and receive radio waves. To use physical 
devices, time is required for installation. In addition, when changing the layout of transceivers 
for testing, the equipment must be moved by people or machines. The problem of system 
operation verification using BLE can be solved using a virtual environment built on a computer 
for testing wireless communication. If the movement and communication of BLE devices can 
be performed virtually with computers instead of physical BLE devices, the cost of equipment 
and installation can be greatly reduced. 
 There are two methods for constructing a virtual wireless communication environment: 
network simulation and network emulation. Network simulation is used for investigating 
network characteristics, such as throughput and delay, by modeling and simulating network 
traffic. NS-3(2) is a typical network simulator. However, simulators cannot be used for tests 
that run applications the same way as for actual environments or for sending and receiving 
frame-by-frame data to verify the operation of the system. Network emulation, in contrast, can 
be used without impairing the network function from the viewpoint of the upper layer. The 
virtual environment used for testing must run the same software as for physical devices, as the 
development cost would increase if different software programs were written for the emulator 
and physical device. It is also possible for different software programs to behave differently. In 
this study, we adopt the emulator method to construct a virtual environment so that the same 
software can be run as for physical devices.
 The IEEE 802.11 emulation system NETorium(3) imitates wireless communication over a 
wired network using a virtual network device. In NETorium, wireless frames are encapsulated 
and transmitted via Ethernet. Wireless characteristics, such as delay and packet loss, are 
injected as parameters, and radio wave interference is imitated by collision judgment by the 
virtual network device upon the reception of each frame. In addition, the Linux operating 
system (OS) can handle a virtual interface in the same way as an actual IEEE 802.11 device 
and can execute the same software as an actual device. However, no BLE emulator exists 
that can realize the same function as NETorium. Furthermore, it is difficult to develop a 
BLE emulator by modifying the wireless emulators of other protocols. In BLE, the frame 
transceiver called the controller has a state, and a state transition is performed according to the 
stage of connection establishment with other devices. Frame transmission may be performed 
autonomously. The characteristics of the BLE controller are different from those of IEEE 
802.11 and other protocols. In this study, we design and implement a BLE emulator for testing 
software systems, and impose several requirements on the proposed emulator. BLE applications 
use the RSS for applications such as proximity detection. Because the RSS varies from frame 
to frame, it is necessary to use an RSS that matches the given situation when receiving a 
frame. Therefore, BLE communication must be emulated on a frame-by-frame basis, and the 
RSS must be calculated for each frame. In addition, radio interference is a typical cause of 
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inactivity in the field despite working well with small-scale verification. When testing a system 
that communicates with a large number of devices, it is important to verify the availability of 
connections according to the device layout and the number of installed devices. Therefore, it 
is necessary to verify radio wave interference at the test stage in the virtual environment. The 
following requirements are proposed for BLE emulators:
(1) calculating the RSS for each frame and
(2) imitating radio interference.
These requirements are used to design BluMoon, which aids software system development 
using BLE emulation.
 A workshop paper(4) and Japanese research report(5) were published regarding an initial 
version of BluMoon. In the present paper, in addition to the summary of the previous papers, 
we describe the design and implementation of BluMoon for calculating the RSS and simulating 
radio wave interference. Furthermore, the results of performance evaluation and comparative 
experiments with physical devices are provided.

2. BLE

 Bluetooth is a standard for short-range wireless communication using the 2.4-GHz band, 
and BLE is a low power consumption protocol adopted by Bluetooth version 4.0. Bluetooth 
specifications including BLE are defined by the Bluetooth Special Interest Group. This 
section describes the BLE specifications related to the design of BLE emulators, especially the 
hierarchical structure and connection establishment.

2.1 Layered architecture of Bluetooth

 Bluetooth, including BLE, has a hierarchical structure consisting of an application, a host, 
and a controller (Fig. 1). Applications using Bluetooth are located at the top layer and often use 
host functions. The controller is responsible for the function of transmitting and receiving radio 
waves for communication. Commands, notifications, and data are exchanged between the host 
and the controller via the host controller interface (HCI). 

Fig. 1. (Color online) Layered structure of Bluetooth.



150 Sensors and Materials, Vol. 33, No. 1 (2021)

 To facilitate application development, the host provides various profiles and protocols, such 
as the Generic Access Profile (GAP), Attribute Protocol (ATT), Generic Attribute Profile (GATT), 
Security Manager Protocol (SMP), and Logical Link Control and Adaptation Protocol (L2CAP).
 The controller sends and receives radio waves to communicate with other controllers. 
There are several types of controllers. BLE uses the Low Energy (LE) controller. There is 
another controller called the Basic Rate/Enhanced Data Rate (BR/EDR) controller, which is 
generally called Classic Bluetooth. BR/EDR and LE are major Bluetooth standards, and most 
commercially available controllers are implemented with dual stacks that support both BR/EDR 
and LE. In this paper, BLE controller or controller refers to an LE controller. There are three 
types of HCI communication methods: HCI commands that send commands from the host to 
the controller, HCI events that send responses and notifications from the controller to the host, 
and HCI data that send and receive data bidirectionally. These are sent and received in the HCI 
frame format.

2.2 State machine of BLE controller

 BLE devices have two roles, namely, central and peripheral. Figure 2 illustrates the sequence 
of establishing a connection between a central and a peripheral. The BLE controller takes one 

Fig. 2. (Color online) Sequence diagram of HCI command, HCI event, and BLE frame until connection 
establishment.
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of five states: standby, advertising, scanning, initiating, and connection (Fig. 3). A central 
device takes the following state transition until a connection is established: standby, scanning, 
initiating, and connection. A peripheral terminal takes the following transition states until a 
connection is established: standby, advertising, and connection. Standby is the initial state after 
turning on the controller.
 Advertising is the state of regularly sending advertising packets, and the transition to 
advertising is performed by LE Set Advertising Enable, an HCI command. Scanning is the 
state of waiting for surrounding advertising packets. When receiving an advertising packet, LE 
Advertising Report, an HCI event, is sent from the controller to the host. Transition to scanning 
is performed by LE Set Scan Enable, an HCI command. Initiating is the state of being ready 
to establish a connection and waiting for surrounding advertising packets from peripherals. 
Transition to initiating is performed by LE Create Connection, an HCI event.
 Connection is the state in which a connection is established between a central and a 
peripheral. The central device transitions to the connection state when it receives an advertising 
packet in the initiating state. At this time, the central device sends a connection request. When 
the peripheral receives this connection request, it transitions to the connection state. In the 
connection state, devices can send and receive data with each other. When the connection is 
terminated, the controller returns to the standby state. In this paper, we call a data frame (e.g., 
advertising packets) exchanged between controllers connection requests and data transmission 
a BLE frame. Figure 4 presents the structure of the BLE frame. Notably, advertising packets 
are also used for information dissemination. There are standards, such as iBeacon(6) and 
Eddystone,(7) that aim to utilize advertising packets for indoor positioning and information 
transmission.

3. Related Works

3.1 BLE simulators and emulators 

 This subsection describes existing simulators and emulators used for testing networks 
and applications related to BLE. Table 1 shows the compliance status of these simulators 
and emulators with requirements listed in Sect. 1. In addition, Fig. 5 indicates whether the 
simulators and emulators execute the BLE application, host, controller, and communication 
virtually or physically. BluMoon proposed in this paper is designed to emulate the controller 
and communication so that these requirements are satisfied.

Fig. 3. (Color onl ine) State d iagram of BLE 
controller.

Fig. 4. (Color online) Data format of BLE frame.



152 Sensors and Materials, Vol. 33, No. 1 (2021)

 Network simulators are often used to simulate communications, including BLE. A typical 
example is NS-3. However, network simulators simulate network traffic to investigate 
throughput and delay, and are thus not appropriate for application testing. 

Table 1
Adaptation status of existing emulation and simulation method to requirements of BLE emulator in this paper: 
executing running code required for emulator, calculating RSS for each frame described as requirement 1 in 
Introduction, and imitating radio interference described as requirement 2 in Introduction. 

Executing
running code Calculating RSS Imitating radio 

interference
Network simulator(2) *2 ✔ ✔
Btvirt(8) ✔
Android Emulator(9) ✔
Wear OS Emulator(9) ✔
iOS Emulator(10)*1 *3

Peripheral Simulator(11,12) ✔
BluMoon (our proposal) ✔ ✔ ✔
*1Limited in iOS version 5
*2Enable if using Direct Code Execution. Details are described in Sect. 3.3
*3Executing binary built for simulator from same source code as for physical devices

Fig. 5. (Color online) Comparison of simulation targets of existing emulation/simulation methods.
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 Btvirt is an open source software program included in the tools provided by the Linux 
Bluetooth stack BlueZ.(8) Btvirt behaves as a virtual Bluetooth controller. It sends and receives 
HCI frames via the UNIX domain socket, accepts HCI commands, and returns appropriate HCI 
events. Btvirt can be handled in the same way as a physical controller connected via Universal 
Serial Bus (USB) or Universal Asynchronous Receiver/Transmitter (UART). However, btvirt 
does not have a function to communicate with other devices. Therefore, it cannot be used for 
system tests that involve communication. 
 In mobile application development, it is common to use the emulator or simulator included 
in the development environment. For Android, there are many emulators that are included in the 
development environment Android Studio,(9) as well as other emulators created by third parties. 
Because these emulators do not have a function for imitating Bluetooth, the Bluetooth operation 
test is performed with physical devices. Notably, the emulator of Wear OS,(13) an Android-based 
OS for wristwatch-type devices, can be used as a BLE peripheral. The Wear OS emulator has 
the function of establishing a connection with a physical Android smartphone or the Android 
emulator. When pairing with a physical Android smartphone, it should be connected to a PC 
running a Wear OS emulator with a USB cable. For iOS, the iOS simulator is included in the 
development environment Xcode.(14) The iOS simulator runs a binary that is built for a simulator 
on MacOS, and the binary is built from the same source code as that of the physical iOS device. 
 When running an application that uses Bluetooth on an iOS simulator, the simulator can use 
the Bluetooth controller on the computer. By preparing the physical device for the peripheral 
device, the iOS simulator can verify the operation using BLE communication. However, this 
function has been discontinued in the iOS version 5 simulator and has not been implemented in 
the later version.(10) The BLE emulator discussed above provides a test environment tailored to 
specific OSs and devices, and thus cannot be used for general BLE testing. 
 There are also smartphone applications that imitate the behavior of peripheral devices for 
the BLE central application test. In this paper, we call these applications peripheral simulators. 
BLE Peripheral Simulator(11) is an Android application for testing the features of Web 
Bluetooth. It imitates the behavior of three types of sensor devices: battery, heart rate monitor, 
and thermometer. Similarly, LightBlue Explorer(12) can launch various peripheral devices as 
virtual peripherals. Peripheral simulators play the role of peripheral devices using a physical 
smartphone. These simulators do not emulate BLE communication but transmit physical radio 
waves with a physical device. Therefore, we cannot use peripheral simulators for BLE system 
testing using emulation.

3.2 Network virtualization of Bluetooth

 BluMoon performs BLE communication emulation frame by frame. For this purpose, 
we consider virtualization that places a BLE frame on another protocol. The virtualization 
of Bluetooth communication has been studied from various perspectives. For performing 
Bluetooth communication between devices in remote areas, several methods have been 
proposed for transmitting and receiving by encapsulating Bluetooth data. UbiPAN(15) makes 
it possible to communicate with devices in remote areas via Bluetooth by installing gateways 
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as a bridge. Tsuda et al. (16) proposed a method to transfer HCI messages by incorporating this 
gateway function into a terminal, and Okada and Suzuki(17) extended this method to support 
BLE. In these methods, the frames are encapsulated, transferred, and then restored to the 
Bluetooth wireless frame. The transmitted frame does not contain the characteristic information 
of wireless communication, such as the RSS indicator (RSSI), and is thus insufficient for use in 
our BLE emulation. 
 BlueMonarch(18) uses emulation for Bluetooth testing and is an emulator that imitates 
Bluetooth OBject EXchange (OBEX) file transmission using service discovery protocol (SDP) 
communication that does not need to establish pairing. BlueMonarch is used for the evaluation 
of content distribution systems and imitates Bluetooth using another Bluetooth protocol. It does 
not use communication protocols other than Bluetooth and thus differs from the emulation of 
our research.
 There are also emulators that use software defined radio (SDR) to Bluetooth testing. 
Wang et al.(19) proposed to perform upper layer protocol emulation with SDR. Liu et al.(20) 
proposed Bluetooth signal emulation performed with field-programmable gate array (FPGA) 
controlled SDR. These proposed methods can accurately reproduce Bluetooth communication 
by using SDR. However, our purpose is software testing. In particular, we are targeting running 
large amounts of application-level software. The methods using SDR have a bottleneck in the 
installation cost of SDR, and it is difficult to scale the test environment. Our method ensures 
scalability by using a network emulator that uses Ethernet communication for the computer 
cluster.

3.3 Wireless network emulators other than Bluetooth

 There are many wireless network emulators for wireless network protocols other than 
Bluetooth. Some wireless network emulators are implemented by software, while others are 
implemented by dedicated hardware. The software-based wireless network emulator QOMET(21) 
injects the characteristics of wireless communication into wired network communication. 
QOMET was designed assuming IEEE 802.11 emulation. On the basis of QOMET, a wireless 
network emulation testbed QOMB,(22) an IEEE 802.15.4 emulator,(23) and a dynamic network 
emulation tool DynamiQ(24) have also been proposed. Another emulator for IEEE 802.11 is 
Meteor.(25) NETorium, a large-scale software-based wireless network emulator, imitates frame 
collisions using a system called Asteroid. It uses mac80211_hwsim(26) as a virtual interface for 
emulation. 
 Tazaki et al.(27) proposed Direct Code Execution (DCE), a framework for executing the 
Linux running code using network simulator NS-3. DCE does not support BLE, but using 
the DCE concept to imitate BLE communication is an option. However, DCE has some 
disadvantages. The first is that processing is concentrated on NS-3. It may prevent scalability. 
This was mentioned in their paper. Second concerns mobility. BLE is used in smartphones and 
wearable devices, which move with the user and RSS changes. Therefore, it must be possible for 
the position of the node in the virtual environment to be changed. Because it is assumed that the 
operation is performed while viewing the result, the node position must be able to be changed 
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at any timing during the execution of the emulation. However, NS-3 only supports predefined 
node movements. Therefore, DCE cannot flexibly specify the node position during simulation. 
The last is about clock. DCE uses a simulated clock to synchronize communication, and the 
code is executed according to it. However, in the system test including BLE communication, 
we would like to confirm the operation of the entire system in a wall clock, not in a simulated 
clock. From these, we did not adopt the concept of DCE, but designed with another architecture 
described in the next section.
 In addition, there are hardware-based wireless emulators that use a FPGA(28) and commercial 
products, such as Network Emulator II.(29) Hardware-based wireless emulators can inject 
wireless characteristics with high accuracy; however, it is difficult to build a test environment 
using many devices owing to the required hardware.

4. Design Policy of BluMoon

 In this section, we propose a method of meeting the requirements of the BLE emulator, as 
described in Sect. 1, and present design policies.

4.1 Emulation of controller divided by HCI

 As an emulator, BluMoon must run the same software for physical devices. As described in 
Sect. 2, in Bluetooth, the host and controller are connected via an HCI. If the behavior of the 
controller connected to the lower layer of the HCI is emulated, the software for physical devices 
can also be run on the emulator. The emulated controller can be handled from the host layer via 
the HCI in the same way as a physical controller. In this paper, we call this emulated controller 
the BluMoon controller (BM-CTL).
 Another option is to emulate including the host layer. However, because the host contains 
many profiles, it is difficult to implement an emulator that imitates the function of the host. The 
HCI-bounded method proposed in this paper can use the actual software as the host. Therefore, 
it is possible to reduce the mounting and easy to follow the Bluetooth specification version.

4.2 Emulation of frame-by-frame communication

 To realize the emulation of frame-by-frame communication, the BM-CTL sends and receives 
data corresponding to BLE frames. We refer to these transmission and reception data as the 
BluMoon frame (BM-FRM). The BM-FRM format is illustrated in Fig. 6. The BM-FRM 
stores the actual BLE frame of the BLE specification format. In addition, it stores three types 
of metadata (channel, TxPower, and location) that are used to calculate the RSS and imitate 
interference.

Fig. 6. (Color online) Format of BM-FRM.
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4.3 Calculation of RSS

 Receiving the BLE frame, the BLE controller calculates the RSS for each frame and 
passes it to the host. The RSS has the characteristic of being attenuated according to distance. 
Considering the simplest model, the radio propagation loss in free space, L(d), can be 
represented by

 10
4( )  20 log dL d
λ
π =−  

 
, (1)

where λ is the wavelength and d is the distance between the transmitter and the receiver. 
Because the received radio wave intensity in a real environment is affected by various factors, 
such as reflection and diffraction, it is not simple enough to be imitated by free space radio 
wave propagation loss. However, calculation by detailed modeling requires time and effort 
for setting conditions and for calculation. BluMoon calculates the RSS from the original 
transmission power, free space radio wave propagation loss, and additive white Gaussian noise 
(AWGN) δ.

 10
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AWGN δ is generated by randomizing the probability density function P(δ) of the normal 
distribution with mean 0 and standard deviation σ.
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TxPower for calculating the RSS is included in the BM-FRM header. The distance d is obtained 
from the positions of the transmitter and receiver. The position of the node is generated outside 
the controller and sent to each BM-CTL. We refer to the data that describe the location of all 
nodes as location information (LC-INF) and refer to the module that creates LC-INF as the 
location generator (LC-GEN). The transmitter position is included in the BM-FRM header 
when transmitting. The BM-CTL of each receiver records its own position and uses it when 
calculating the RSS. There are several ways to implement the LC-GEN. One is a scenario-
based method that determines the location information in advance, and another is a multi-agent 
simulator method that moves on the basis of the rule possessed by each node.

4.4 Occurrence of radio interference

 BLE divides the band from 2.400 to 2.480 GHz into 0.002 GHz and configures 40 channels 
that do not overlap. If a BLE frame is transmitted on the same channel from a different node, 
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the signal cannot be decoded and communication cannot be established. In this paper, this 
phenomenon is called radio wave interference. BLE has a mechanism to avoid radio wave 
interference by BLEs and other 2.4 GHz band communication systems. Advertisement uses 
three channels (37, 38, 39) in a fixed manner; thus, radio wave interference is likely to occur. 
Bluetooth version 4.2 specifies a frame transmission bit rate of 1 Mbps; in other words, it takes 
200 μs to send a 200-bit frame. Radio interference occurs during the transmission of the frame. 
However, because BluMoon transmits Ethernet frames, the time required for frame transmission 
is much shorter than that for actual BLE transmission. The actual transmission time required 
for BLE is then estimated, and a pseudo-transmission state is generated to imitate interference. 
The design of this interference was proposed by Asteroid, which was included in the wireless 
network emulator NETorium. Specifically, the time from receiving the BM-FRM is regarded 
as the time required to receive the BLE frame. If another BM-FRM is received, it is considered 
that interference has occurred. 
 The time required to receive a BLE frame is denoted trcv and is proportional to the length of 
the frame. trcv is derived as 

 610rcv
Lt = . (4)

Here, L is the length of the BLE frame, that is, the length of the BM-FRM body. This method of 
simulating radio wave interference is explained in Fig. 7. 
 Figure 7 illustrates the flow of time when two BM-FRMs are received sequentially. In Fig. 
7(a), there is no interference, while in Fig. 7(b), there is interference. In each subfigure, a circle 
indicates the time at which the BM-FRM is received; these are referred to as t0 and t1. trcv, 
which is the time required to receive a BLE frame, is described in detail above. In the figure, 
the first frame is blue and the second frame is red, and they are independent. If another BM-
FRM is not received before trcv elapses from the time of receiving the BM-FRM, it is considered 
that there is no radio wave interference, and the BM-FRM is accepted [Fig. 7(a)]. However, if 
another BM-FRM is received within the trcv time from the time of receiving the BM-FRM, it is 

Fig. 7. (Color online) Explanation of radio interference emulation in BluMoon. t0 and t1 indicate the arrival time 
of the BM-FRM, and trcv indicates the time required for receiving the entire BLE frame. (a) If another BM-FRM is 
not received before trcv elapses from the time of receiving the BM-FRM, it is considered that no radio interference 
has occurred, and the BM-FRM is accepted. (b) When another BM-FRM is received, it is considered that radio 
interference has occurred, and both BM-FRMs are discarded.

(a)

(b)
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considered that radio wave interference has occurred, and both BM-FRMs are discarded [Fig. 
7(b)].
 Note that another method for simulating radio wave interference is to generate packet 
loss with an arbitrary probability. However, in the BLE use case, the surrounding radio wave 
conditions change markedly. It is more versatile to generate radio wave interference depending 
on the given situation than to generate packet loss with a fixed probability. It is possible to 
change the situation by frequently updating the probability of packet loss. However, in this case, 
an additional mechanism is necessary to collect the surrounding radio wave environment and 
calculate the packet loss probability. Because BluMoon emulates on a frame-by-frame basis, it 
is possible to use the received frames to imitate radio interference without collecting additional 
information. Therefore, we use the proposed method in this study.

5. Design and Implementation of BluMoon

 In this section, we describe the specific software design and implementation of BluMoon to 
realize the design policy presented in Sect. 4. In this study, we implement BluMoon as software 
running on Linux.

5.1 Overview

 BluMoon consists of the BM-CTL and LC-GEN. The BM-CTL emulates the behavior of the 
controller, while the LC-GEN generates the location information of each device and sends it to 
all BM-CTLs. We designed the BM-CTL by dividing it into the following three modules:
• BluMoon HCI transceiver (BM-HCI)
• BluMoon manager (BM-MGR)
• BluMoon connector (BM-CNC) 
The design of dividing a module into functional units simplifies the implementation, in turn 
making it easier to follow the Bluetooth standard update. For example, the BM-HCI can be 
modified to follow updates to the HCI. Similarly, the BM-CNC can be modified to follow 
updates to the link layer. The LC-INF is required for the calculation of the RSS. The LC-GEN 
generates the LC-INF and transfers it to each BM-CTL. These configurations are summarized 
in Fig. 8.

5.2 BM-HCI

 The BM-HCI has the function of transmitting and receiving HCI frames with the host layer. 
When receiving HCI data or HCI commands from the host, the BM-HCI transfers the contents 
to the BM-MGR. When receiving an HCI event generation or data transmission command from 
the BM-MGR, the BM-HCI transmits the HCI event or data to the host. Figure 9 illustrates the 
relationship between the BM-HCI and BlueZ, which is a Bluetooth stack for Linux. BlueZ acts 
as a host on Linux. In BlueZ, some drivers are connected to BlueZ Core, which has the core 
functions of the host.
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 The driver is a Virtual Host Controller Interface (VHCI) driver for connecting to a virtual 
controller, and a UART driver and USB driver for connecting to the actual device. There are 
several types of drivers. The UART and USB drivers connect to controllers with their protocols, 
while the VHCI driver connects to a virtual controller. Because the difference in the controller 
device is absorbed by the driver, the upper layer from BlueZ Core can handle the controller 
without depending on the device. Virtual controllers connected to the VHCI driver can be 
controlled by software for the actual devices. The VHCI driver sends and receives HCI frames 
via the UNIX domain socket /dev/vhci. To act as a virtual controller for the BM-CTL, it is 
necessary to launch a socket server that waits for VHCI sockets. We implemented the VHCI 
socket interface in the BM-HCI by extending btvirt, which is a reference implementation of 
a virtual controller communicating with BlueZ. The BM-HCI converts the format of the HCI 
frame received from the VHCI socket interface and passes it to the BM-MGR. When receiving 
the HCI event generation and data transmission commands from the BM-MGR, the BM-HCI 
sends the HCI frame corresponding to the command to BlueZ via the VHCI socket interface.

5.3 BM-MGR

 The BM-MGR manages the entire BluMoon controller for sending and receiving. The 
BM-MGR manages the five states (Fig. 3) of standby, advertising, scanning, initiating, and 
connection. In addition, it controls the transmission of the BM-FRM and the receiving slot. 
The BM-MGR creates a BM-FRM by adding metadata of the channel and TxPower to the 
BLE frame format (Fig. 4) and passes it to the BM-CNC. In the advertising state, the BM-
MGR has a timer and transmits at regular intervals. The BLE controller can receive the BLE 
frame of the specified channel during standby, and it often sleeps to reduce power consumption 
during standby. The BM-MGR is responsible for specifying the standby channel and switching 
between waking up and sleeping. The BM-MGR collates the channel described in the received 
BM-FRM metadata with the standby channel of the BM-CTL. If they match, the BM-FRM is 
accepted; otherwise, the BM-FRM is discarded.

Fig. 9. (Color online) Architecture of BlueZ (Linux 
Bluetooth stack) and BM-HCI. These are connected 
with the UNIX domain socket /dev/vhci.

Fig. 8. (Color online) Design overview of BluMoon.
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5.4 BM-CNC

 The BM-CNC is responsible for the actual transmission and reception of the BM-FRM. The 
BM-CNC encapsulates the BM-FRM by Generic Network Virtualization Encapsulation (Geneve), 
stores it in a User Datagram Protocol (UDP) segment (Fig. 10), and broadcasts it to an Internet 
Protocol (IP) network. The BLE frame, channel, and TxPower for creating the BM-FRM are 
included in the transmission command from the BM-MGR. The BM-CNC holds the location of 
its own ID described in the LC-INF sent from the LC-GEN. When the BR-FRM is transmitted,
the BM-CNC describe the location into the BM-FRM header. 
 The receiving BM-CNC analyzes the received BM-FRM, determines the radio wave 
interference, and calculates the received radio wave intensity. These details are as described in 
Sect. 4. The BM-CNC adds the RSSI to the received BLE frame and passes it to the BM-MGR. 

5.5 LC-GEN

 The LC-GEN generates LC-INF and broadcasts it periodically. The LC-INF comprises data 
that contain the node IDs and the two-dimensional coordinates of all nodes. Figure 11 displays 
the JSON data format of LC-INF. There are several ways to implement LC-GEN: one method 
that follows the predetermined position and time scenario, and another method that uses a multi-
agent simulator. In this paper, we implement the LC-GEN as a Python script that sends LC-INF 
according to the predetermined scenario. 

6. Evaluation

6.1 Functional evaluation

 We verified whether the proposed BluMoon met the functional requirements of the BLE 
emulator for software testing. There are many HCI commands and events in the Bluetooth 
standard. In this study, we implemented six HCI commands and three HCI events, as displayed 
in Table 2. As a result, it was possible to respond to all five states (Fig. 3) of the LE controller 
presented in Sect. 2. This indicated that the minimum requirements were met. We omitted the 
implementation related to encryption and communication parameter settings; however, these can 
be supported by future implementations. Figure 12 presents the execution result of hciconfig, 

Fig. 10. (Color online) BM-FRM encapsulated in 
Geneve and stored as UDP segment.

Fig. 11. Example of LC-INF that describes two-
dimensional coordinate of node ID 1–4.
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which is a command tool for Linux included in BlueZ. Hciconfig verifies the status of the 
controllers connected by the HCI and control startup and shutdown. The BM-CTL implemented 
as BluMoon is also displayed by hciconfig and controlled similarly to other controllers. The 
BM-CTL can be controlled using not only hciconfig, but also programming languages such as 
C and Node.js. In this way, the emulated BM-CTL can be handled as a Bluetooth controller via 
the HCI.

6.2 Performance evaluation

 To evaluate the BluMoon resource consumption, we measured the central processing unit 
(CPU) usage during BluMoon execution. The CPU usage was measured at the time of sending 
and receiving advertisements. We used Group P nodes of the network testbed StarBED(30) for 
measurement. Each node was connected with 10-Gigabit Ethernet via network switches. Table 
3 displays a list of equipment and software used for measurement. In measurement at sending, 
HCI commands that set and started advertisement were executed. In measurement at receiving, 
the Node.js script created using noble(31) was executed. Figure 13 presents the measurement 
results of the CPU usage when sending advertisements. The figure displays the CPU usage 
according to the number of advertisement transmissions per unit time. Because the BM-HCI, 
BM-MGR, and BM-CNC were executed as individual processes, the CPU usage is shown for 
each process. 
 The CPU usage rates of the BM-MGR and BM-CNC increased as the advertising interval 
decreased; that is, the transmission frame per unit time increased. In contrast, the BM-HCI 
only sent the HCI command (LE Set Advertise Enable) at the start of the advertisement and 

Table 2
List of HCI commands and events we implemented in this paper.
Type Name
Command LE Set Advertising Parameter
Command LE Set Advertising Data
Command LE Set Advertising Enable
Command LE Set Scan Parameters
Command LE Set Scan Enable
Command LE Create Connection
Event Command Complete
Event LE Advertising Report
Event LE Connection Complete

Fig. 12. Result of hciconfig command execution.
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did not use the CPU during the advertisement transmission. According to the specifications of 
Bluetooth version 4.2, the minimum advertisement interval was set to 20 ms. In other words, 
the maximum number of transmission frames per second was 50. Within the specifications, it 
was possible to execute transmission with low CPU consumption. 
 Figure 14 presents the measurement results of the CPU usage when receiving advertisements. 
The figure displays the CPU usage based on the number of received advertisements per unit 
time. Unlike the case of sending advertisements, the HCI event was generated and sent to the 
host at every instance of advertisement reception. Therefore, the CPU usage rate increased 
according to the advertisement reception number for all three processes: BM-HCI, BM-
MGR, and BM-CNC. According to the specifications, there is no upper limit on the number of 
received advertisements. However, the number of advertisement transmitters that exist in the 
surrounding area is limited in practice. The class of Bluetooth is determined by the maximum 
radio wave output. Class 1 devices, which have the highest maximum radio wave output, have 
a reach of approximately 100 m. When advertisement transmitters are arranged every meter 
in an area of 100 × 100 m2, there are approximately 10000 advertisement transmitters. If these 
advertisement transmitters send an advertisement every 1.28 s, which is the default specification 
value, the receiver receives 7812.5 advertisements per second. Within this range, it is possible to 
receive advertisements with the practical consumption of CPU resources. 

6.3 RSS

 To verify whether BluMoon design requirement 1 was met, we measured the RSS depending 
on the distance. A transmitter and a receiver were installed to send and receive advertising 

Fig. 14. (Color on l ine) CPU usage rate when 
receiving advertising packets. The format of the graph 
is the same as that of Fig. 13.

Fig. 13. (Color online) CPU usage when sending 
advertising packets. The horizontal axis displays 
the number of advertisements sent per second. The 
vertical axis represents the CPU utilization. Values 
are calculated for each process of the BM-HCI, BM-
MGR, and BM-CNC.

Table 3
Measurement environment.
Chassis Dell PowerEdge R430
CPU Intel Xeon E5-2683 v4 (2.1GHz, 16cores) x2
Memory 384 GB
OS Ubuntu 16.04 Server AMD64
Bluetooth Stack BlueZ 5.43
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packets, respectively, and the RSSI was recorded while changing the distance between the 
transmitter and the receiver. We measured the RSSI at a transceiver distance of 0.1–30 m, 
measuring 10 s at each position. The measurement was performed in both the physical and 
BluMoon emulated environments, and the physical environment was measured in two cases: 
indoor and outdoor. For the physical environment, we used Raspberry Pi 3 Model B as a 
transceiver [Fig. 15(a)]. The outdoor measurement was performed in an empty field [Fig. 15(b)], 
while the indoor measurement was performed in an indoor corridor with a glass wall [Fig. 
15(c)].
 The measurement results are presented in Fig. 16, which displays the measured value and 
its logarithmic approximation. Similarly to the physical environment, the BluMoon emulation 
measurement results also exhibited the characteristics of radio waves, which attenuate 
according to the distance. The value of BluMoon was approximately halfway between the 
physical indoor and outdoor measurements. This indicates that the measured values of BluMoon 
were not unrealistic compared with the physical environment. Note that the results were only for 
the case of applying the free space radio wave attenuation formula in BluMoon. The radio wave 
attenuation calculation model used by BluMoon is not limited to this; that is, BluMoon can use 
other models.

6.4 Radio interference

 To verify whether design requirement 2 of BluMoon was satisfied, we measured the 
reception rate with radio wave interference. To measure the reception rate, the number of 
received advertising packets transmitted from the transmitter was counted. The advertisement 
interval of the transmitter was set to 20 ms, which is the shortest interval defined by the 
Bluetooth 4.2 standard. Ideally, the receiver receives 50 advertising packets per second. Using 
this as the denominator, the reception rate was calculated from the number of receptions. In 
addition to the transmitter, up to four interferers were installed. Similarly to the transmitter, 
these interferers transmitted an advertising packet at 20 ms intervals. The advertising frame 

Fig. 16. (Color online) Measurement results of 
RSSI according to distance. The horizontal axis is 
logarithmic. The points are measured values, and the 
lines are their logarithmic approximations.

Fig. 15. (Color online) Physical environment of 
RSSI measurement. (a) Configuration of transmitter 
and receiver. (b) Outdoor environment. (c) Indoor 
environment.
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Fig. 18. (Color online) Relationship between Tadv, 
Tai, and Td in advertising packet transmission.

length is 376 bits. The physical environment was in a steel warehouse that was largely 
shielded from other radio waves, and Raspberry Pi 3 Model B was used for the transceiver 
and interferers (Fig. 17). We performed measurements in both the physical environment and 
the BluMoon emulation environment and compared the results with theoretical values. The 
theoretical values were derived as follows. When an advertising packet of a certain length was 
transmitted, the probability of colliding with the advertising packet of one interferometer was 

 0
 2 adv

ai d

TP
T T

=
+

. (5)

Here, Tadv is the time required to transmit the advertising packet and can be derived from 
Eq. (4). Tai is the advertising interval time between sending one advertising packet and the 
next advertising packet. Td is the advertising delay, which is a random waiting time inserted 
after every advertisement transmission. The advertisement delay is used to avoid collisions of 
advertising packets of the same interval. The advertisement delay is different for each packet 
transmission, and we set its average value to Td for use in deriving the theoretical value of the 
collision probability. The relationship between these variables is illustrated in Fig. 18. Tadv, Tai, 
and Td have the same values for the transmitter and interferer. When there are N interferers, the 
probability PN of colliding with the advertising packet of at least one interferer is the same as 
that of the complementary event of not colliding with any advertising packet of the interferers. 
Thus, PN can be derived as

 ( )01 1 N
NP P= − −  (6)

21 1
N

adv

ai d

T
T T

 
= − − + 

. (7)

 In this experiment, the advertising frame length is 376 bits. Since the bit rate of BLE is 
1 Mbps, Tadv, which is the time required to send one advertising frame, is 0.376 ms. The 
minimum and maximum intervals are set as the advertising parameters. We both set it to 20 ms 
in this experiment. Therefore, Tai is 20 ms and Td is 0 ms. 

Fig. 17. (Color online) Physical environment of 
reception rate measurement.
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 The measurement results are presented in Fig. 19. Similarly to the theoretical values and 
physical environment, BluMoon also demonstrated the tendency in which the reception rate 
decreased as the number of interfering devices increased. The correlation function between the 
BluMoon measurement and the theoretical value was 0.9799, which indicates that our proposed 
method successfully imitated radio wave interference. In addition, the correlation between the 
physical environment measurement and the theoretical value was 0.9241, which was lower than 
that between the BluMoon measurement and the theoretical value.
 The condition of the above experiment is that Tadv, Tai, and Td have the same value for the 
transmitter and interferer. In the real environment, the value may differ for each interferer. 
The BluMoon judges interference by monitoring the simultaneous reception of frames in 
consideration of the frame length. Therefore, the usefulness of our method does not depend on 
the advertising interval. 
 In order to demonstrate this, we conducted additional experiments with interferers with 
different advertising intervals. We performed the experiment with 30 interferers and set their 
advertising interval to 100, 250, and 1000 ms. These three values are used in Android OS. 
 In order to compare with the experimental results, we derived the following theoretical 
formulas. The theoretical value is derived as follows. Let Tai and Td of the n-th interferer be 
Tai[n] and Td[n], respectively. NP′ , which is a probability of colliding with the advertising packet 
of the n-th interferer, is

 [ ]0
 2

[ ] [ ]
adv

ai d

TP n
T n T n

=
+

′ . (8)

When there are N interferers with different advertising intervals, the probability NP′  of colliding 
with the advertising packet can be derived as

 ( )0
1

[ ]1 1
N

N
n

P nP
=

′ = − ′−∏ . (9)

Equation (9) is a general equation for the probability of collision with N interferences. When all 
interferences have the same advertising interval, Eq. (9) can be simplified to Eq. (7).

Fig. 19. (Color online) Measurement results of reception rate according to number of interferers.
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 Table 4 shows a comparison between the experimental results and the theoretical values. 
As in the previous experiment, the experimental results show that the reception rate decreases 
as the number of interference frames increases. We speculate that the difference between the 
theoretical value and the measured value is due to the accuracy of the time handled by the 
software.
 As described in the previous section, the physical environment of radio waves changes 
owing to various factors, which causes interference fluctuations. Examining how BluMoon 
emulation handles fluctuations of the physical environment is left for future work.

7. Discussion

7.1 Radio propagation model

 In this study, we used a simple model (i.e., free space radio wave propagation loss) to 
calculate the RSS. Therefore, the environment imitated by BluMoon was an open space with 
no objects around. However, this is the simplest example. In a physical space, there are various 
objects, such as the ground, walls, and furniture. Because radio waves reflect from these and 
take multiple routes, the received radio field intensity fluctuates.(32) By replacing the radio wave 
propagation model, it is possible to build an emulation environment closer to the physical space. 
For example, the two-wave reflection model considers the reflected waves on the ground, and 
the ray tracing method calculates the path from the position of the reflected object.

7.2 Function to avoid interference

 In this paper, interference in the BluMoon was evaluated by advertisement. With this 
mechanism, it is possible to imitate not only advertisement but also communication interference 
after the establishment of connection. The BLE communication standard has mechanisms to 
avoid interference such as channel scanning and frequency hopping. However, the BluMoon has 
not yet implemented these features. This is a future work for the BluMoon. 

7.3 Interference other than BLE

 In the implementation in this paper, we dealt only with interference between BLEs. 
However, in the actual environment, there are other 2.4 GHz band radio waves. The principle 

Table 4
Measurement results of reception rate with different advertising intervals for interferers.

Number of 
interferers 
(100 ms)

Number of 
interferers 
(250 ms)

Number of 
interferers 
(1000 ms)

Reception rate
(theoretical value)

Reception rate
(measurement result 

with BluMoon)
10 10 10 93.46666667 89.303247
5 5 20 95.84444444 93.4400238
5 20 5 94.15555556 90.3251575

20 5 5 90.42222222 84.383995
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of interference in BluMoon is to calculate collisions using the frequency band and reception 
duration. With this information, it is possible to imitate interference with radio waves other than 
BLE. Interference with other radio waves can be added by defining an interference frame and 
transmitting it to the BluMoon receiver.
 The interference frame requires two types of information: frequency band and duration. In 
the current BluMoon, the frequency band uses a channel described in the header of BM-FRM, 
and the duration is calculated from its frame length. However, such calculations cannot be made 
for interference other than BLE. For example, in the case of Wi-Fi, the channel division method 
and bit rate are different from BLE. The simplest implementation is to describe the frequency 
band and duration directly in the interference frame. 
 There are also radio interference sources other than communication, such as microwave 
ovens. They become white noise because they interfere over a wide area regardless of the 
channel. BluMoon can handle such interference by describing that it interferes in the entire 
band. The detailed design and implementation of interference with radio waves other than BLE 
shall be future work.

7.4 Deployment to other platforms

 In this study, we used Linux and its Bluetooth stack BlueZ to realize our BluMoon concept. 
The core idea of implementing a virtual controller and emulating with HCI as the interface is 
applicable not only to Linux and BlueZ but also to other platforms. If the Bluetooth stack is an 
open source, it can be rewritten to connect to a virtual controller instead of an actual controller. 
By implementing a virtual controller with the functions introduced in this paper, a BLE 
emulator can be developed on any platform. 
 For example, we consider deploying on Android. Versions of Android prior to 4.1 used 
BlueZ, which is used in our study. However, from 4.2 to the present, another open source 
Bluetooth stack called Fluoride(33) (formerly Bluedroid) has been used. By rewriting the part of 
Flouride that is responsible for HCI and implementing a virtual controller, BLE communication 
can be emulated in Android applications. However, running the Bluetooth emulator on an 
actual Android device has few advantages. When running the BLE emulator, it will run on the 
Android emulator. By developing an Android emulator that incorporates customized Fluoride, it 
will be possible to check the BLE operation of Android applications. In that case, if the host OS 
of the Android emulator is Linux, The BluMoon Controller we implemented can be utilized. 

8. Conclusions

 In this paper, we propose BluMoon, a BLE emulator, for software system testing. We 
designed, implemented, and evaluated BluMoon. For its design, we imposed the following 
requirements:
(1) calculating the RSS for each frame and 
(2) simulating radio interference.
 We proposed an emulator design that replaces the controller with the HCI as the boundary. 
From the viewpoint of layers higher than the HCI, the emulator executes the same software as 
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for physical BLE devices. To meet requirement 1, we proposed a design in which each controller 
calculates the RSSI when receiving a BLE frame. The RSSI is derived by calculating the radio 
wave attenuation from the distance between a transmitter and a receiver. To meet requirement 2, 
we designed an interference simulation that discards frames if they arrive on the same channel 
at the same time. 
 We implemented BluMoon based on this design and evaluated its effectiveness through 
various measurement experiments. In the functional evaluation, we demonstrated that BluMoon 
can be used in the same way as a physical BLE controller. In the performance evaluation, we 
measured the CPU usage and demonstrated that BluMoon can be executed with reasonable 
resource consumption. In the comparison experiment with physical environments, we 
demonstrated that it is feasible to use our design to imitate the RSS and radio wave interference. 
 BluMoon can be used for testing various types of BLE applications, such as proximity 
detection, sensor data collection, and stamp rally. Various testing methods and theories related 
to software development have been developed in the field of software engineering. However, for 
systems that are affected by physical space, testing methods are still evolving. In other research, 
we used the BluMoon emulation results to reproduce the radio wave environment in a physical 
box for testing with a physical mobile device.(34) In future work, we plan to further develop the 
testing method of the system considering the surrounding environment. 
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